S1D16700

CONTENTS

1. DESCRIPTION 4-1
2. FEATURES 4-1
3. BLOCK DIAGRAM 4-2
4. PIN DESCRIPTION 4-3
5. PAD 4-4
6. FUNCTIONAL DESCRIPTION 4-6
7. TIMING CHART (S1D16700D01B*) 4-7
8. ABSOLUTE MAXIMUM RATINGS 4-8
9. ELECTRICAL CHARACTERISTICS 4-9
10. LCD DRIVE POWER 4-12
11. CONNECT EXAMPLE 4-13

1. DESCRIPTION

The S1D16700 is a 100 output low-power resistance common (row) driver which is suitable for driving a very high capacity dotmatrix LCD panels upto a duty ratio of $1 / 300$. It is intended to be used in conjunction with the S1D16400 or S1D16006 as a pair.
Since the S1D16700 is so designed to drive LCDs over a wide range of voltages, and also the maximum potential Vo of its LCD drive bias voltages is isolated from VDD to allow the LCD driving bias voltages to be externally generated optionally with a high accuracy, it can cope with a wide range of LCD panels.
Owing to its pad layout which can minimize its PC boards mounting space in addition to its selectable bidirectional driver output sequence and as many as 100 LCD output segments of high pressure resistance and low output impedance, it is possible to obtain the highest driver working efficiency for the $1 / 200$ duty panel. And the S1D $16700 * 01 * *$ can display 65×132 panel when used as a common driver of RAM buit-in driver, S1D15301.

2. FEATURES

- Number of LCD drive output segments: 100
- Common output ON resistance: 700Ω (Typ.)
- Display duty ratio: $1 / 64$ to $1 / 300$ (Reference)
- Display capacity: Possible to display 640×480 dots when used in combination with S1D 16400D or S1D16006D.
- Selectable pin output shift direction
- No-bias display OFF function (S1D16700 $* 01 * *$)
- Instantaneous display blanking enabled by inhibit function (S1D16700*00**)
- Adjustable offset bias of LCD power to VDD level
- Wide range of LCD drive voltages: -7 V to -28 V (Absolute maximum rated voltage: -30 V)
- Logic system power supply: -2.7 V to -5.5 V
- Shipping pattern S1D16700D00A* (Al pad chip) S1D16700D01A* (Al pad chip) S1D16700D00B* (Au bump chip) S1D16700D01B * (Au bump chip) S1D16700T00A* (TCP) S1D16700T01A* (TCP)
- No radial rays countermeasure taken in designing

3. BLOCK DIAGRAM

INH in S1D16700*00** $\overline{\text { DOFF }}$ in S1D16700*01**

4. PIN DESCRIPTION

Pin name	I/O	Function						Number of pins
COM0 to COM099	0	LCD drive common (row) output The output changes at the YS CL falling edge.						100
$\begin{aligned} & \text { DIO1, } \\ & \text { DIO2 } \end{aligned}$	I/O	100-bit shift register serial data input/output To be set to input or output according to the SHL input The output changes at the YSCL falling edge.						2
YSCL	1	Serial data shift clock input The scanning data is shifted at the falling edge.						1
SHL	I	Shift direction selection and DIO pin I/O control input						1
		SHL	COM	ut shi	ction	DIO1	DIO2	
		LOW		\rightarrow	99	Input	Output	
		HIGH	99	\rightarrow	0	Ourput	Input	
$\overline{\text { DOFF }}$	I	LCD display blanking control input When LOW is input, the content of shift register is cleared and all common outputs become the Vo level instantaneously (S1D16700D01B*).						1
(INH)	I	LCD drive display blanking control input When LOW is input, the content of shift register is cleared and all common outputs become the non-select level instantaneously. Common output $=\mathrm{V}_{4}($ when FR $=$ LOW $)$ Common output $=\mathrm{V}_{1}($ when $\mathrm{FR}=\mathrm{HIGH})($ S1D16700D00B *)						(1)
FR	I	LCD drive output AC converted signal input						1
Vdd, Vss	Power supply	Logic power supply Vdd: 0 V (GND) Vss: -5.0 V						2
$\begin{aligned} & \text { V0, V1, } \\ & \text { V4, V5 } \end{aligned}$	Power supply	$\begin{array}{ll} \hline \text { LCD drive power supply } \begin{array}{ll} V_{5}:-7 \mathrm{~V} \text { to }-28 \mathrm{~V} \\ & V_{D D} \geq \mathrm{V}_{0} \geq \mathrm{V}_{1}>\mathrm{V}_{4} \geq \mathrm{V}_{5} \end{array} \end{array}$						4

$\overline{\text { INH for S1D16700*00** }}$
$\overline{\text { DOFF }}$ for S1D16700*01**

5. PAD

- Pad layout

Chip size $5.49 \mathrm{~mm} \times 3.03 \mathrm{~mm}$
Chip thickness $525 \mu \mathrm{~m}($ Au-bump die from $)$

$400 \mu \mathrm{~m}($ Al-Pad die from $)$

1) Au bump specification reference values

Bump specific: High Quarity Au bump
Bump size: $\quad 90 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$
Bump height: $\quad 17 \mu \mathrm{~m} \sim 28 \mu \mathrm{~m}$
2) AL Pad specification reference values

Pad Opening : $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$

- Pad center coordinates

PAD		Actual dimensions	
NO.	NAME	X	Y
1	COM5	-2187	-1357
2	6	-2058	
3	7	-1929	
4	8	-1799	
5	9	-1670	
6	10	-1541	
7	11	-1412	
8	12	-1283	
9	13	-1153	
10	14	-1024	
11	15	-895	
12	16	-766	
13	17	-637	
14	18	-507	
15	19	-378	
16	20	-249	
17	21	-120	
18	22	10	
19	23	139	
20	24	268	
21	25	397	
22	26	526	
23	27	656	
24	28	785	
25	29	914	
26	30	1043	
27	31	1172	
28	32	1302	
29	33	1431	
30	34	1560	
31	35	1689	
32	36	1818	
33	37	1948	
34	38	2077	
35	39	2206	\downarrow
36	40	2335	-1357
37	41	2584	-1231
38	42	2584	-1094
40	43	2584	-969
	2584	-840	

PAD		Actual dimensions	
NO.	NAME	X	Y
41	COM45	2584	-711
42	46		-581
43	47		-452
44	48		-323
45	49		-194
46	50		-65
47	51		65
48	52		194
49	53		323
50	54		452
51	55		581
52	56		711
53	57		840
54	58		969
55	59	V	1098
56	60	2584	1231
57	61	2298	1357
58	62	2168	
59	63	2039	
60	64	1910	
61	65	1781	
62	66	1652	
63	67	1522	
64	68	1393	
65	69	1264	
66	70	1135	
67	71	1006	
68	72	876	
69	73	747	
70	74	618	
71	75	489	
72	76	360	
73	77	230	
74	78	101	
75	79	-28	
76	80	-157	
77	81	-286	
78	82	-416	
79	83	-545	\checkmark
80	84	-674	1357

PAD No. 97: $\overline{\text { INH }}$ for S1D16700*00** DOFF for S1D16700*01**

6. FUNCTIONAL DESCRIPTION

Shift register

This is a bidirectional shift register to transfer common data.

Level shifter

This is a level interface circuit used to convert the signal voltage level from the logic system level to LCD drive level.

LCD driver circuit

This driver outputs the LCD drive voltage.
The relationship among the display blanking signal DOFF, contents of shift register, AC converted signal FR and common output voltage is as shown in the table below:

(S1D16700*01**)				
DOFF	Contents of shift register	FR	COM output voltage	
	HIGH	HIGH	V_{5}	(Select level)
		LOW	V_{0}	
	LOW	HIGH	V_{1}	(Non-select
		V_{4}	level)	

The relationship among the display blanking signal INH, contents of the shift register, AC converted signal FR and COM output voltage is as shown in the table below:
(S1D16700*00**)

INH	Contents of shift register	FR	COM output voltage	
	HIGH	HIGH	V_{5}	(Select level)
		V_{0}		
	LOW	HIGH	V_{1}	(Non-select
	LOW	V_{4}	level)	

7.TIMING CHART (S1D16700D01B*)

The V1 or V4 non-select level is output corresponding to the FR in S1D16700D00B* or $\overline{\mathrm{INH}}=\mathrm{LOW}$, respectively.

8. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vss	-7.0 to +0.3	V
Supply voltage (2)	V_{5}	-30.0 to +0.3	V
Supply voltage (3)	$\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{4}$	$\mathrm{~V}_{5}-0.3$ to +0.3	V
Input voltage	V I	$\mathrm{Vss}-0.3$ to +0.3	V
Output voltage	Vo	$\mathrm{Vss}-0.3$ to +0.3	V
Output current (1)	Io	20	mA
Output current (2)	locom	20	mA
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storing temperature 1	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes:

1. The voltage of V_{0}, V_{1} and V_{4} must always satisfy the condition of $V D D \geq V_{0} \geq V_{1} \geq V_{4} \geq V_{5}$.
2. Floating of the logic system power during while the LCD drive system power is applied, or exceeding Vss $=-2.6 \mathrm{~V}$ or more can cause permanent damage to the LSI. Functional operation under these conditions is not implied.
Care should be taken to the power supply sequence especially in the system power ON or OFF.

9. ELECTRICAL CHARACTERISTICS

DC characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{Vss}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$.

Parameter	Symbol		Condition	Min.	Typ.	Max.	Unit	Applicable pin
Supply voltage (1)	Vss		-	-5.5	-5.0	-2.7	V	Vss
Recommended operating voltage	V5		-	-28.0	-	-7.0	V	V5
Operation enable voltage	V_{5}		tional operation	-	-	-7.0	V	V5
Supply voltage (2)	Vo		mmended value	-2.5	-	0	V	Vo
Supply voltage (3)	V_{1}		mmended value	2/9.V5	-	VDD	V	V_{1}
Supply voltage (4)	V_{4}		mmended value	V_{5}	-	7/9.V5	V	V_{4}
HIGH input voltage (1)	VIH	$\mathrm{Vss}=-2.7 \mathrm{~V}$ to -5.5 V		0.2 Vss	-	0	V	$\begin{aligned} & \text { DIO1, DIO2, } \\ & \text { YSCL, SHL, FR } \end{aligned}$
LOW input voltage (1)	VIL			Vss	-	0.8 Vss	V	
HIGH input voltage (2)	VIHT	$\mathrm{V} s=-2.7 \mathrm{~V}$ to -5.5 V		0.2 Vss	-	0	V	$\overline{\text { DOFF }}$, $\overline{\mathrm{INH}}$
LOW input voltage (2)	VILT			Vss	-	0.85 Vss	V	
HIGH output voltage	VOH	$\begin{aligned} & \hline \mathrm{OH}=-0.3 \\ & \mathrm{loH}=-0.2 \\ & (\mathrm{VsS}=-2 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \\ & 7 \text { to }-4.5 \mathrm{~V}) \end{aligned}$	-0.4	-	0	V	DIO1, DIO2
LOW output voltage	Vol	$\begin{aligned} & \text { loL=+0.3 } \\ & \text { loL=+0.2 } \\ & \text { (Vss=-2 } \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \text { to }-4.5 \mathrm{~V}) \end{aligned}$	Vss	-	Vss+0.4	V	
Input leakage current	ILI	$\mathrm{V} s \mathrm{~s} \leq \mathrm{V}$	$\leq 0 \mathrm{~V}$	-	-	2.0	$\mu \mathrm{A}$	$\frac{\mathrm{YSCL}}{\mathrm{DOFF},} \frac{\mathrm{SHL}}{\mathrm{INH}, \mathrm{FR}}$
Input/output leakage current	ILI/O	$\mathrm{V} s \mathrm{~s} \leq \mathrm{V}$	$\leq 0 \mathrm{~V}$	-	-	5.0	$\mu \mathrm{A}$	DIO1, DIO2
Static current	IdDS	$\begin{aligned} & \mathrm{V}_{5}=-7 . \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \text { to }-28.0 \mathrm{~V} \\ & \mathrm{VIL}=\mathrm{Vss} \end{aligned}$	-	-	25	$\mu \mathrm{A}$	VDd
Output resistance	Rcom	$\begin{aligned} & \Delta \mathrm{VON} \\ & =0.5 \mathrm{~V} \end{aligned}$	When the $V_{5}=$ V_{1}, V_{4}, V_{0} or V_{5} -20.0 V level is output	-	0.70	1.40	$\mathrm{k} \Omega$	COM0~COM99
Average operating current consumption (1)	Iss1	Vss=-5 VIL=Vss Frame Input d every 1 Other c same a	$\mathrm{V}, \mathrm{V} \mathrm{IH}=\mathrm{VDD}$, fyscl=12KHz, equency $=60 \mathrm{~Hz}$ a; " H " at no load 00 duty nditions are the $\mathrm{Vss}=-3.0 \mathrm{~V}$		7 5	15 10	$\mu \mathrm{A}$	Vss
Average operating current consumption (2)	Iss2	Vss=-5.0 $\mathrm{V}_{4}=-18$ Other c same a	$\mathrm{V},=-2.0 \mathrm{~V},$ V, $\mathrm{V}_{5}=-20.0 \mathrm{~V}$ ditions are the in the item of Iss1.	-	7	15	$\mu \mathrm{A}$	V5
Input pin capacitance	Cl	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		-	-	8	pF	$\frac{\mathrm{YSCL},}{\mathrm{DOFF},}, \mathrm{IHL}, ~$
Input/output pin capacitance	Cl/o			-	-	15	pF	DIO1, DIO2

AC Characteristics

Input timing characteristics

Unless otherwise specified Vss $=-5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Max.	Unit
Input signal rise time	tr_{r}	-	-	50	ns
Input signal fall time	tf	-	-	50	ns
YSCL period	tcCL	-	500	-	ns
YSCL HIGH pulsewidth	twCLH	-	70	-	ns
YSCL LOW pulsewidth	twCLL	-	330	-	ns
Data setup time	tDS	-	100	-	ns
Data hold time	tDH	-	10	-	ns
Allowable FR delay time	tDFR	-	-500	500	ns

Unless otherwise specified Vss $=-2.7 \mathrm{~V}$ to -4.5 V , $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Max.	Unit
Input signal rise time	tr	-	-	50	ns
Input signal fall time	tf	-	-	50	ns
YSCL period	tcCL	-	1000	-	ns
YSCL HIGH pulsewidth	twCLH	-	160	-	ns
YSCL LOW pulsewidth	twCLL	-	330	-	ns
Data setup time	tDS	-	200	-	ns
Data hold time	tDH	-	10	-	ns
Allowable FR delay time	tDFR	-	-500	500	ns

The standard applicable to tCCL, twCLH, twCLL and tDS when VSS $=-2.4 \mathrm{~V}$ shall be 1.3 times of that applies when Vss $=-2.7 \mathrm{~V}$ to -4.5 V .

Output timing characteristics

Unless otherwise specified $\mathrm{Vss}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDOCL	CL=15pF	30	300	ns
(YSCL - fall to COM output) delay time	tpdccl	$\begin{array}{r} \mathrm{V}_{5}=-7.0 \text { to } \\ -28.0 \mathrm{~V} \\ \mathrm{CL}=100 \mathrm{pF} \end{array}$	-	3.0	$\mu \mathrm{s}$
(DOFF to COM output) delay time (INH to COM output) delay time	tpdcDoff tpdCINH				
(FR to COM output) delay time	tpdCFR		-	3.0	$\mu \mathrm{s}$

Unless otherwise specified Vss $=-2.7 \mathrm{~V}$ to -4.5 V , $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDock	CL=15pF	60	600	ns
(YSCL - fall to COM output) delay time	tpdccl	$\begin{aligned} & \mathrm{V}_{5}=-7.0 \text { to } \\ &-28.0 \mathrm{~V} \\ & \mathrm{CL}=100 \mathrm{pF} \end{aligned}$	-	3.0	$\mu \mathrm{S}$
(DOFF to COM output) delay time (INH to COM output) delay time	tpdCDOFF tpdCINH				
(FR to COM output) delay time	tpdcFR		-	3.0	$\mu \mathrm{s}$

The standard applicable at VSS $=-2.4 \mathrm{~V}$ shall be the same as that employed when VSS $=-2.7 \mathrm{~V}$ to -4.5 V .

10. LCD DRIVE POWER

Each voltage level forming method

To obtain each voltage level for LCD driving, it is the most simple to divide the resistance of potential as shown in the connection example. On the other hand, to obtain a high quality display, it is necessary to raise the accuracy and constancy of each voltage level and to set the divided resistance value as low as possible in the range of system power capacity.
Especially when a low-power LCD driving is required, set the divided resistance to a higher value and drive the LCD with a voltage follower by means of operational amplifier instead. In taking into consideration of a case where the operational amplifier is employed, the maximum potential level V0 for LCD driving has been isolated from the VDD pin.
When the potential of Vo lowers than that of VDD and the potential difference between the two becomes larger, however, the capacity of LCD drive output driver lowers. To avoid it, use the system with the potential difference of 0 V to 2.5 V between V 0 and Vdd.
When no operational amplifier is used, connect $V 0$ and VDD pins.

Note in power ON/OFF

Since this LSI is high in the voltage of LCD driving system, when a high voltage is applied to the LCD driving system with the logic system power supply kept floating, an overcurrent flows and LSI breaks down in some cases.

Be sure to follow the power ON/OFF sequence as shown below:

At power ON ... Logic system ON \rightarrow LCD driving system ON or simultaneous ON of the both
At power OFF ... LCD driving system OFF \rightarrow Logic system OFF or simultaneous OFF of the both

11. CONNECT EXAMPLE

Note *1 It must be provided as the protective resister against overcurrent. Also, the bypass capacitor $(0.01 \mu \mathrm{~F})$ for noise suppression must be provided near to Vss and V5 terminals on each LSI.

